Algorithms are not neutral: Bias in collaborative filtering
Discussions of algorithmic bias tend to focus on examples where either the data or the people building the algorithms are biased. This gives the impression that clean data and good intentions could eliminate bias. The neutrality of the algorithms themselves is defended by prominent Artificial Intelligence researchers. However, algorithms are not neutral. In addition to biased data and biased algorithm makers, AI algorithms themselves can be biased. This is illustrated with the example of collaborative filtering, which is known to suffer from popularity, and homogenizing biases. Iterative information filtering algorithms in general create a selection bias in the course of learning from user responses to documents that the algorithm recommended. These are not merely biases in the statistical sense; these statistical biases can cause discriminatory outcomes. Data points on the margins of distributions of human data tend to correspond to marginalized people. Popularity and homogenizing biases have the effect of further marginalizing the already marginal. This source of bias warrants serious attention given the ubiquity of algorithmic decision-making.
READ FULL TEXT