DeepAI AI Chat
Log In Sign Up

Algorithms and System Architecture for Immediate Personalized News Recommendations

by   Takeshi Yoneda, et al.
Gunosy Inc.

Personalization plays an important role in many services, just as news does. Many studies have examined news personalization algorithms, but few have considered practical environments. This paper provides algorithms and system architecture for generating immediate personalized news in a practical environment. Immediacy means changes in news trends and user interests are reflected in recommended news lists quickly. Since news trends and user interests rapidly change, immediacy is critical in news personalization applications. We develop algorithms and system architecture to realize immediacy. Our algorithms are based on collaborative filtering of user clusters and evaluate news articles using click-through rate and decay scores based on the time elapsed since the user's last access. Existing studies have not fully discussed system architecture, so a major contribution of this paper is that we demonstrate a system architecture and realize our algorithms and a configuration example implemented on top of Amazon Web Services. We evaluate the proposed method both offline and online. The offline experiments are conducted through a real-world dataset from a commercial news delivery service, and online experiments are conducted via A/B testing on production environments. We confirm the effectiveness of our proposed method and also that our system architecture can operate in large-scale production environments.


page 1

page 2

page 3

page 4


Algorithms and Architecture for Real-time Recommendations at News UK

Recommendation systems are recognised as being hugely important in indus...

Graph Enhanced Representation Learning for News Recommendation

With the explosion of online news, personalized news recommendation beco...

A Contextual-Bandit Approach to Personalized News Article Recommendation

Personalized web services strive to adapt their services (advertisements...

Uni-FedRec: A Unified Privacy-Preserving News Recommendation Framework for Model Training and Online Serving

News recommendation is important for personalized online news services. ...

Understanding Journalists' Workflows in News Curation

With the increasing dominance of the internet as a source of news consum...

Analysis of Bias in Gathering Information Between User Attributes in News Application

In the process of information gathering on the web, confirmation bias is...