Algorithms and Data Structures to Accelerate Network Analysis

11/17/2017 ∙ by Jordi Ros-Giralt, et al. ∙ 0

As the sheer amount of computer generated data continues to grow exponentially, new bottlenecks are unveiled that require rethinking our traditional software and hardware architectures. In this paper we present five algorithms and data structures (long queue emulation, lockless bimodal queues, tail early dropping, LFN tables, and multiresolution priority queues) designed to optimize the process of analyzing network traffic. We integrated these optimizations on R-Scope, a high performance network appliance that runs the Bro network analyzer, and present benchmarks showcasing performance speed ups of 5X at traffic rates of 10 Gbps.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.