Algorithmic Factors Influencing Bias in Machine Learning

04/28/2021
by   William Blanzeisky, et al.
0

It is fair to say that many of the prominent examples of bias in Machine Learning (ML) arise from bias that is there in the training data. In fact, some would argue that supervised ML algorithms cannot be biased, they reflect the data on which they are trained. In this paper we demonstrate how ML algorithms can misrepresent the training data through underestimation. We show how irreducible error, regularization and feature and class imbalance can contribute to this underestimation. The paper concludes with a demonstration of how the careful management of synthetic counterfactuals can ameliorate the impact of this underestimation bias.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset