Algorithmic aspects of quasi-kernels

07/08/2021
by   Hélène Langlois, et al.
0

In a digraph, a quasi-kernel is a subset of vertices that is independent and such that every vertex can reach some vertex in that set via a directed path of length at most two. Whereas Chvátal and Lovász proved in 1974 that every digraph has a quasi-kernel, very little is known so far about the complexity of finding small quasi-kernels. In 1976 Erdős and Székely conjectured that every sink-free digraph D = (V, A) has a quasi-kernel of size at most |V|/2. Obviously, if D has two disjoint quasi-kernels then it has a quasi-kernel of size at most |V|/2, and in 2001 Gutin, Koh, Tay and Yeo conjectured that every sink-free digraph has two disjoint quasi-kernels. Yet, they constructed in 2004 a counterexample, thereby disproving this stronger conjecture. We shall show that, not only sink-free digraphs occasionally fail to contain two disjoint quasi-kernels, but it is computationally hard to distinguish those that do from those that do not. We also prove that the problem of computing a small quasi-kernel is polynomial time solvable for orientations of trees but is computationally hard in most other cases (and in particular for restricted acyclic digraphs).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset