Algorithm for numerical solutions to the kinetic equation of a spatial population dynamics model with coalescence and repulsive jumps

07/31/2020
by   Igor Omelyan, et al.
0

An algorithm is proposed for finding numerical solutions of a kinetic equation that describes an infinite system of point articles placed in ℝ^d (d ≥ 1). The particles perform random jumps with pair wise repulsion, in the course of which they can also merge. The kinetic equation is an essentially nonlinear and nonlocal integro-differential equation, which can hardly be solved analytically. The derivation of the algorithm is based on the use of space-time discretization, boundary conditions, composite Simpson and trapezoidal rules, Runge-Kutta methods, adjustable system-size schemes, etc. The algorithm is then applied to the one-dimensional version of the equation with various initial conditions. It is shown that for special choices of the model parameters, the solutions may have unexpectable time behaviour. A numerical error analysis of the obtained results is also carried out.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro