Algebraic deformation for (S)PDEs

11/11/2020
by   Yvain Bruned, et al.
0

We introduce a new algebraic framework based on the deformation of pre-Lie products. This allows us to provide a new construction of the algebraic objects at play in Regularity Structures in the work arXiv:1610.08468 and in arXiv:2005.01649 for deriving a general scheme for dispersive PDEs at low regularity. This construction also explains how the algebraic structure in arXiv:1610.08468 can be viewed as a deformation of the Butcher-Connes-Kreimer and the extraction-contraction Hopf algebras. We start by deforming various pre-Lie products via a Taylor deformation and then we apply the Guin-Oudom procedure which gives us an associative product whose adjoint can be compared with known coproducts. This work reveals that pre-Lie products and their deformation can be a central object in the study of (S)PDEs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro