ALFRED: Virtual Memory for Intermittent Computing
We present ALFRED: a virtual memory abstraction that resolves the dichotomy between volatile and non-volatile memory in intermittent computing. Mixed-volatile microcontrollers allow programmers to allocate part of the application state onto non-volatile main memory. Programmers are therefore to explore manually the trade-off between simpler management of persistent state against the energy overhead for non-volatile memory operations and intermittence anomalies due to re-execution of non-idempotent code. This approach is laborious and yields sub-optimal performance. We take a different stand with ALFRED: we provide programmers with a virtual memory abstraction detached from the specific volatile nature of memory and automatically determine an efficient mapping from virtual to volatile or non-volatile memory. Unlike existing works, ALFRED does not require programmers to learn a new programming model or language syntax, while the mapping is entirely resolved at compile-time, reducing the run-time energy overhead. We implement ALFRED through a series of program machine-level code transformations. Compared to existing systems, we demonstrate that ALFRED reduces energy consumption by up to two orders of magnitude given a fixed workload. This enables the workloads to finish sooner, as the use of available energy shifts from ensuring forward progress to useful application processing.
READ FULL TEXT