AIIR-MIX: Multi-Agent Reinforcement Learning Meets Attention Individual Intrinsic Reward Mixing Network
Deducing the contribution of each agent and assigning the corresponding reward to them is a crucial problem in cooperative Multi-Agent Reinforcement Learning (MARL). Previous studies try to resolve the issue through designing an intrinsic reward function, but the intrinsic reward is simply combined with the environment reward by summation in these studies, which makes the performance of their MARL framework unsatisfactory. We propose a novel method named Attention Individual Intrinsic Reward Mixing Network (AIIR-MIX) in MARL, and the contributions of AIIR-MIX are listed as follows:(a) we construct a novel intrinsic reward network based on the attention mechanism to make teamwork more effective. (b) we propose a Mixing network that is able to combine intrinsic and extrinsic rewards non-linearly and dynamically in response to changing conditions of the environment. We compare AIIR-MIX with many State-Of-The-Art (SOTA) MARL methods on battle games in StarCraft II. And the results demonstrate that AIIR-MIX performs admirably and can defeat the current advanced methods on average test win rate. To validate the effectiveness of AIIR-MIX, we conduct additional ablation studies. The results show that AIIR-MIX can dynamically assign each agent a real-time intrinsic reward in accordance with their actual contribution.
READ FULL TEXT