AI assisted Malware Analysis: A Course for Next Generation Cybersecurity Workforce

09/21/2020
by   Maanak Gupta, et al.
0

The use of Artificial Intelligence (AI) and Machine Learning (ML) to solve cybersecurity problems has been gaining traction within industry and academia, in part as a response to widespread malware attacks on critical systems, such as cloud infrastructures, government offices or hospitals, and the vast amounts of data they generate. AI- and ML-assisted cybersecurity offers data-driven automation that could enable security systems to identify and respond to cyber threats in real time. However, there is currently a shortfall of professionals trained in AI and ML for cybersecurity. Here we address the shortfall by developing lab-intensive modules that enable undergraduate and graduate students to gain fundamental and advanced knowledge in applying AI and ML techniques to real-world datasets to learn about Cyber Threat Intelligence (CTI), malware analysis, and classification, among other important topics in cybersecurity. Here we describe six self-contained and adaptive modules in "AI-assisted Malware Analysis." Topics include: (1) CTI and malware attack stages, (2) malware knowledge representation and CTI sharing, (3) malware data collection and feature identification, (4) AI-assisted malware detection, (5) malware classification and attribution, and (6) advanced malware research topics and case studies such as adversarial learning and Advanced Persistent Threat (APT) detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset