AgileNet: Lightweight Dictionary-based Few-shot Learning

05/21/2018
by   Mohammad Ghasemzadeh, et al.
0

The success of deep learning models is heavily tied to the use of massive amount of labeled data and excessively long training time. With the emergence of intelligent edge applications that use these models, the critical challenge is to obtain the same inference capability on a resource-constrained device while providing adaptability to cope with the dynamic changes in the data. We propose AgileNet, a novel lightweight dictionary-based few-shot learning methodology which provides reduced complexity deep neural network for efficient execution at the edge while enabling low-cost updates to capture the dynamics of the new data. Evaluations of state-of-the-art few-shot learning benchmarks demonstrate the superior accuracy of AgileNet compared to prior arts. Additionally, AgileNet is the first few-shot learning approach that prevents model updates by eliminating the knowledge obtained from the primary training. This property is ensured through the dictionaries learned by our novel end-to-end structured decomposition, which also reduces the memory footprint and computation complexity to match the edge device constraints.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset