Aggregated Learning: A Vector-Quantization Approach to Learning Neural Network Classifiers

01/12/2020
by   Masoumeh Soflaei, et al.
0

We consider the problem of learning a neural network classifier. Under the information bottleneck (IB) principle, we associate with this classification problem a representation learning problem, which we call "IB learning". We show that IB learning is, in fact, equivalent to a special class of the quantization problem. The classical results in rate-distortion theory then suggest that IB learning can benefit from a "vector quantization" approach, namely, simultaneously learning the representations of multiple input objects. Such an approach assisted with some variational techniques, result in a novel learning framework, "Aggregated Learning", for classification with neural network models. In this framework, several objects are jointly classified by a single neural network. The effectiveness of this framework is verified through extensive experiments on standard image recognition and text classification tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset