Age-Optimal Power Allocation in Industrial IoT: A Risk-Sensitive Federated Learning Approach
This work studies a real-time environment monitoring scenario in the Industrial Internet of Things (IIoT), where wireless sensors proactively collect environmental data and transmit it to the controller. We adopt the notion of risk-sensitivity in financial mathematics as the objective to jointly minimize the mean, variance, and other higher-order statistics of the network energy consumption subject to the constraints on the AoI threshold violation probability and the AoI exceedances over a pre-defined threshold. We characterize the extreme AoI staleness using results in extreme value theory and propose a distributed power allocation approach by weaving in together principles of Lyapunov optimization and federated learning (FL). Simulation results demonstrate that the proposed FL-based distributed solution is on par with the centralized baseline while consuming 28.50 outperforms the other baselines.
READ FULL TEXT