Age-Minimal Transmission for Energy Harvesting Sensors with Finite Batteries: Online Policies
An energy-harvesting sensor node that is sending status updates to a destination is considered. The sensor is equipped with a battery of finite size to save its incoming energy, and consumes one unit of energy per status update transmission, which is delivered to the destination instantly over an error-free channel. The setting is online in which the harvested energy is revealed to the sensor causally over time, and the goal is to design status update transmission policy such that the long term average age of information (AoI) is minimized. AoI is defined as the time elapsed since the latest update has reached at the destination. Two energy arrival models are considered: a random battery recharge (RBR) model, and an incremental battery recharge (IBR) model. In both models, energy arrives according to a Poisson process with unit rate, with values that completely fill up the battery in the RBR model, and with values that fill up the battery incrementally, unit-by-unit, in the IBR model. The key approach to characterizing the optimal status update policy for both models is showing the optimality of renewal policies, in which the inter-update times follow a specific renewal process that depends on the energy arrival model and the battery size. It is then shown that the optimal renewal policy has an energy-dependent threshold structure, in which the sensor sends a status update only if the AoI grows above a certain threshold that depends on the energy available. For both the RBR and the IBR models, the optimal energy-dependent thresholds are characterized explicitly, i.e., in closed-form, in terms of the optimal long term average AoI. It is also shown that the optimal thresholds are monotonically decreasing in the energy available in the battery, and that the smallest threshold, which comes in effect when the battery is full, is equal to the optimal long term average AoI.
READ FULL TEXT