Age-Based Cache Updating Under Timestomping
We consider a slotted communication system consisting of a source, a cache, a user and a timestomping adversary. The time horizon consists of total T time slots, such that the source transmits update packets to the user directly over T_1 time slots and to the cache over T_2 time slots. We consider T_1≪ T_2, T_1+T_2 < T, such that the source transmits to the user once between two consecutive cache updates. Update packets are marked with timestamps corresponding to their generation times at the source. All nodes have a buffer size of one and store the packet with the latest timestamp to minimize their age of information. In this setting, we consider the presence of an oblivious adversary that fully controls the communication link between the cache and the user. The adversary manipulates the timestamps of outgoing packets from the cache to the user, with the goal of bringing staleness at the user node. At each time slot, the adversary can choose to either forward the cached packet to the user, after changing its timestamp to current time t, thereby rebranding an old packet as a fresh packet and misleading the user into accepting it, or stay idle. The user compares the timestamps of every received packet with the latest packet in its possession to keep the fresher one and discard the staler packet. If the user receives update packets from both cache and source in a time slot, then the packet from source prevails. The goal of the source is to design an algorithm to minimize the average age at the user, and the goal of the adversary is to increase the average age at the user. We formulate this problem in an online learning setting and provide a fundamental lower bound on the competitive ratio for this problem. We further propose a deterministic algorithm with a provable guarantee on its competitive ratio.
READ FULL TEXT