AFS: An Attention-based mechanism for Supervised Feature Selection

02/28/2019
by   Ning Gui, et al.
0

As an effective data preprocessing step, feature selection has shown its effectiveness to prepare high-dimensional data for many machine learning tasks. The proliferation of high di-mension and huge volume big data, however, has brought major challenges, e.g. computation complexity and stability on noisy data, upon existing feature-selection techniques. This paper introduces a novel neural network-based feature selection architecture, dubbed Attention-based Feature Selec-tion (AFS). AFS consists of two detachable modules: an at-tention module for feature weight generation and a learning module for the problem modeling. The attention module for-mulates correlation problem among features and supervision target into a binary classification problem, supported by a shallow attention net for each feature. Feature weights are generated based on the distribution of respective feature se-lection patterns adjusted by backpropagation during the train-ing process. The detachable structure allows existing off-the-shelf models to be directly reused, which allows for much less training time, demands for the training data and requirements for expertise. A hybrid initialization method is also intro-duced to boost the selection accuracy for datasets without enough samples for feature weight generation. Experimental results show that AFS achieves the best accuracy and stability in comparison to several state-of-art feature selection algo-rithms upon both MNIST, noisy MNIST and several datasets with small samples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset