AdvisingNets: Learning to Distinguish Correct and Wrong Classifications via Nearest-Neighbor Explanations

08/25/2023
by   Giang Nguyen, et al.
0

Besides providing insights into how an image classifier makes its predictions, nearest-neighbor examples also help humans make more accurate decisions. Yet, leveraging this type of explanation to improve both human-AI team accuracy and classifier's accuracy remains an open question. In this paper, we aim to increase both types of accuracy by (1) comparing the input image with post-hoc, nearest-neighbor explanations using a novel network (AdvisingNet), and (2) employing a new reranking algorithm. Over different baseline models, our method consistently improves the image classification accuracy on CUB-200 and Cars-196 datasets. Interestingly, we also reach the state-of-the-art human-AI team accuracy on CUB-200 where both humans and an AdvisingNet make decisions on complementary subsets of images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset