Adversarially Robust Learning with Unknown Perturbation Sets

02/03/2021 ∙ by Omar Montasser, et al. ∙ 0

We study the problem of learning predictors that are robust to adversarial examples with respect to an unknown perturbation set, relying instead on interaction with an adversarial attacker or access to attack oracles, examining different models for such interactions. We obtain upper bounds on the sample complexity and upper and lower bounds on the number of required interactions, or number of successful attacks, in different interaction models, in terms of the VC and Littlestone dimensions of the hypothesis class of predictors, and without any assumptions on the perturbation set.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.