Adversarial VQA: A New Benchmark for Evaluating the Robustness of VQA Models

06/01/2021 ∙ by Linjie Li, et al. ∙ 22

With large-scale pre-training, the past two years have witnessed significant performance boost on the Visual Question Answering (VQA) task. Though rapid progresses have been made, it remains unclear whether these state-of-the-art (SOTA) VQA models are robust when encountering test examples in the wild. To study this, we introduce Adversarial VQA, a new large-scale VQA benchmark, collected iteratively via an adversarial human-and-model-in-the-loop procedure. Through this new benchmark, we present several interesting findings. (i) Surprisingly, during dataset collection, we find that non-expert annotators can successfully attack SOTA VQA models with relative ease. (ii) We test a variety of SOTA VQA models on our new dataset to highlight their fragility, and find that both large-scale pre-trained models and adversarial training methods can only achieve far lower performance than what they can achieve on the standard VQA v2 dataset. (iii) When considered as data augmentation, our dataset can be used to improve the performance on other robust VQA benchmarks. (iv) We present a detailed analysis of the dataset, providing valuable insights on the challenges it brings to the community. We hope Adversarial VQA can serve as a valuable benchmark that will be used by future work to test the robustness of its developed VQA models. Our dataset is publicly available at https://adversarialvqa.



There are no comments yet.


page 1

page 8

page 14

page 15

page 16

page 18

page 20

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.