Adversarial target-invariant representation learning for domain generalization

11/03/2019
by   Isabela Albuquerque, et al.
0

In many applications of machine learning, the training and test set data come from different distributions, or domains. A number of domain generalization strategies have been introduced with the goal of achieving good performance on out-of-distribution data. In this paper, we propose an adversarial approach to the problem. We propose a process that enforces pair-wise domain invariance while training a feature extractor over a diverse set of domains. We show that this process ensures invariance to any distribution that can be expressed as a mixture of the training domains. Following this insight, we then introduce an adversarial approach in which pair-wise divergences are estimated and minimized. Experiments on two domain generalization benchmarks for object recognition (i.e., PACS and VLCS) show that the proposed method yields higher average accuracy on the target domains in comparison to previously introduced adversarial strategies, as well as recently proposed methods based on learning invariant representations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset