1 Introduction
In a seminal paper, Szegedy et al. [23] demonstrated that neural networks are vulnerable to visually imperceptible but carefully chosen adversarial perturbations which cause neural networks to output incorrect predictions. After this revealing study, a flurry of research has been conducted with the focus of making networks robust against such adversarial perturbations [14, 16, 19, 26]. Concurrently, researchers devised stronger attacks that expose previously unknown vulnerabilities of neural networks [25, 4, 1, 3].
Of the many approaches proposed [20, 2, 6, 22, 15, 19], adversarial training [14, 16] is empirically the best performing algorithm to train networks robust to adversarial perturbations. However, the cost of adversarial training becomes prohibitive with growing model complexity and input dimensionality. This is primarily due to the cost of computing adversarial perturbations, which is incurred at each step of adversarial training. In particular, for each new minibatch one must perform multiple iterations of a gradientbased optimizer on the network’s inputs to find said perturbations.^{1}^{1}1While computing the globally optimal adversarial example is NPhard [11], gradient descent with several random restarts was empirically shown to be quite effective at computing adversarial perturbations of sufficient quality. As each step of this optimizer requires a new backwards pass, the total cost of adversarial training scales as roughly the number of such steps. Unfortunately, effective adversarial training of ImageNet often requires large number of steps to avoid problems of gradient obfuscation [1, 25], making it much more expensive than conventional training, almost prohibitively so.
One approach which can alleviate the cost of adversarial training is training against weaker adversaries that are cheaper to compute. For example, by taking fewer gradient steps to compute adversarial examples during training. However, this can produce models which are robust against weak attacks, but break down under strong attacks – often due to gradient obfuscation. In particular, one form of gradient obfuscation occurs when the network learns to fool a gradient based attack by making the loss surface highly convoluted and nonlinear (see Fig 1), which in turn prevents gradient based optimization methods from finding an adversarial perturbation within a small number of iterations [4, 25]. In contrast, if the loss surface was linear in the vicinity of the training examples, which is to say wellpredicted by local gradient information, gradient obfuscation cannot occur. In this paper, we take up this idea and introduce a novel regularizer that encourages the loss to behave linearly in the vicinity of the training data. We call this regularizer the local linearity regularizer (LLR). Empirically, we find that networks trained with LLR exhibit far less gradient obfuscation, and are almost equally robust against strong attacks as they ares against weak attacks.
The main contributions of our paper are summarized below:

We show that training with LLR is significantly faster than adversarial training, allowing us to train a robust ImageNet model with a speed up when training on 128 TPUv3 cores [9].

We show that LLR trained models exhibit higher robustness relative to adversarially trained models when evaluated under strong attacks. Adversarially trained models can exhibit a decrease in accuracy of 6% when increasing the attack strength at test time for CIFAR10, whereas LLR shows only a decrease of 2%.

We achieve new state of the art results for adversarial accuracy against untargeted whitebox attack for ImageNet (with ^{2}^{2}2This means that every pixel is perturbed independently by up to 4 units up or down on a scale where pixels take values ranging between 0 and 255.): . Furthermore, we match state of the art results for CIFAR 10 (with ): ^{3}^{3}3We note that TRADES [28] gets 55% against a much weaker attack; under our strongest attack, it gets 52.5%..

We perform a large scale evaluation of existing methods for adversarially robust training under consistent, strong, whitebox attacks. For this we recreate several baseline models from the literature, training them both for CIFAR10 and ImageNet (where possible).^{4}^{4}4Baselines created are adversarial training, TRADES and CURE [19]. To the contrary of CIFAR10, we are currently unable to achieve consistent and competitive results on ImageNet at using TRADES.
2 Background and Related Work
We denote our classification function by , mapping input features
to the output logits for classes in set
, i.e. , with being the model parameters and being the label. Adversarial robustness for is defined as follows: a network is robust to adversarial perturbations of magnitude at input if and only if(1) 
In this paper, we focus on and we use to denote for brevity. Given the dataset is drawn from distribution
, the standard method to train a classifier
is empirical risk minimization (ERM), which is defined by: Here,is the standard crossentropy loss function defined by
(2) 
where is defined as above, and
is a 1hot vector representing the class label. While ERM is effective at training neural networks that perform well on holdout test data, the accuracy on the test set goes to zero under adversarial evaluation. This is a result of a distribution shift in the data induced by the attack. To rectify this, adversarial training
[19, 14] seeks to perturb the data distribution by performing adversarial attacks during training. More concretely, adversarial training minimizes the loss function(3) 
where the inner maximization, , is typically performed via a fixed number of steps of a gradientbased optimization method. One such method is ProjectedGradientDescent (PGD) which performs the following gradient step:
(4) 
where . Another popular gradientbased method is to use the sign of the gradient [8]. The cost of solving Eq (3) is dominated by the cost of solving the inner maximization problem. Thus, the inner maximization should be performed efficiently to reduce the overall cost of training. A naive approach is to reduce the number of gradient steps performed by the optimization procedure. Generally, the attack is weaker when we do fewer steps. If the attack is too weak, the trained networks often display gradient obfuscation as highlighted in Fig 1.
Since the invention of adversarial training, a corpus of work has researched alternative ways of making networks robust. One such approach is the TRADES method [28]
which is a form of regularization that specifically maximizes the tradeoff between robustness and accuracy – as many studies have observed these two quantities to be at odds with each other
[24]. Others, such as work by Ding et al [7] adaptively increase the perturbation radius by find the minimal length perturbation which changes the output label. Some have proposed architectural changes which promote adversarial robustness, such as the "denoise" model [26] for ImageNet.The work presented in this paper is closely related to the paper by Moosavi et al [19], which highlights that adversarial training reduces the curvature of with respect to . Leveraging an empirical observation (the highest curvature is along the direction ), they further propose an algorithm to mimic the effects of adversarial training on the loss surface. The algorithm results in comparable performance to adversarial training with a significantly lower cost.
3 Motivating the Local Linearity Regularizer
As described above, the cost of adversarial training is dominated by solving the inner maximization problem . Throughout we abbreviate with . We can reduce this cost simply by reducing the number of PGD (as defined in Eq (4)) steps taken to solve . To motivate the local linearity regularizer (LLR), we start with an empirical analysis of how the behavior of adversarial training changes as we increase the number of PGD steps used during training. We find that the loss surface becomes increasingly linear as we increase the number of PGD steps, captured by the local linearity measure defined below.
3.1 Local Linearity Measure
Suppose that we are given an adversarial perturbation . The corresponding adversarial loss is given by . If our loss surface is smooth and approximately linear, then is well approximated by its firstorder Taylor expansion . In other words, the absolute difference between these two values,
(5) 
is an indicator of how linear the surface is. Consequently, we consider the quantity
(6) 
to be a measure of how linear the surface is within a neighbourhood . We call this quantity the local linearity measure.
3.2 Empirical Observations on Adversarial Training
We measure for networks trained with adversarial training on CIFAR10, where the inner maximization is performed with 1, 2, 4, 8 and 16 steps of PGD. is measured throughout training on the training set^{5}^{5}5To measure we find with 50 steps of PGD using Adam as the optimizer and 0.1 as the step size.. The architecture used is a wide residual network [27] 28 in depth and 10 in width (WideResNet2810). The results are shown in Fig 1(a) and 1(b). Fig 1(a) shows that when we train with one and two steps of PGD for the inner maximization, the local loss surface is extremely nonlinear. An example visualization of such a loss surface is given in Fig 4(a). However, when we train with four or more steps of PGD for the inner maximization, the surface is relatively well approximated by as shown in Fig 1(b). An example of the loss surface is shown in Fig 4(b). For the adversarial accuracy of the networks, see Table 4.
4 Local Linearity Regularizer (LLR)
From the section above, we make the empirical observation that the local linearity measure decreases as we train with stronger attacks^{6}^{6}6Here, we imply an increase in the number of PGD steps for the inner maximization .. In this section, we give some theoretical justifications of why local linearity correlates with adversarial robustness, and derive a regularizer from the local linearity measure that can be used for training of robust models.
4.1 Local Linearity Upper Bounds Adversarial Loss
The following proposition establishes that the adversarial loss is upper bounded by the local linearity measure, plus the change in loss as predicted by the gradient (which is given by ).
Proposition 4.1.
Consider a loss function that is oncedifferentiable, and a local neighbourhood defined by . Then for all
(7) 
See Appendix B for the proof.
From Eq (7) it is clear that the adversarial loss tends to , i.e., , as both and for all . And assuming one also has the upper bound .
4.2 Local Linearity Regularization (LLR)
Following the analysis above, we propose the following objective for adversarially robust training
(8) 
where and are hyperparameters to be optimized, and (recall the definition of from Eq (5)). Concretely, we are trying to find the point in where the linear approximation is maximally violated. To train we penalize both its linear violation and the gradient magnitude term , as required by the above proposition. We note that, analogous to adversarial training, LLR requires an inner optimization to find – performed via gradient descent. However, as we will show in the experiments, much fewer optimization steps are required for the overall scheme to be effective. Pseudocode for training with this regularizer is given in Appendix E.
4.3 Local Linearity is a sufficient regularizer by itself
Interestingly, under certain reasonable approximations and standard choices of loss functions, we can bound in terms of . See Appendix C for details. Consequently, the bound in Eq (7) implies that minimizing (along with the nominal loss ) is sufficient to minimize the adversarial loss . This prediction is confirmed by our experiments. However, our experiments also show that including in the objective along with and works better in practice on certain datasets, especially ImageNet. See Appendix F.3 for details.
5 Experiments and Results
We perform experiments using LLR on both CIFAR10 [13] and ImageNet [5] datasets. We show that LLR gets state of the art adversarial accuracy on CIFAR10 (at ) and ImageNet (at ) evaluated under a strong adversarial attack. Moreover, we show that as the attack strength increases, the degradation in adversarial accuracy is more graceful for networks trained using LLR than for those trained with standard adversarial training. Further, we demonstrate that training using LLR is faster for ImageNet. Finally, we show that, by linearizing the loss surface, models are less prone to gradient obfuscation.
CIFAR10: The perturbation radius we examine is and the model architectures we use are WideResNet288, WideResNet408 [27]. Since the validity of our regularizer requires
to be smooth, the activation function we use is softplus function
, which is a smooth version of ReLU. The baselines we compare our results against are adversarial training (ADV)
[16], TRADES [28] and CURE [19]. We recreate these baselines from the literature using the same network architecture and activation function. The evaluation is done on the full test set of 10K images.ImageNet: The perturbation radii considered are and . The architecture used for this is from [10] which is ResNet152. We use softplus as activation function. For , the baselines we compare our results against is our recreated versions of ADV [16] and denoising model (DENOISE) [26].^{7}^{7}7We attempted to use TRADES on ImageNet but did not manage to get competitive results. Thus they are omitted from the baselines. For , we compare LLR to ADV [16] and DENOISE [26] networks which have been published from the the literature. Due to computational constraints, we limit ourselves to evaluating all models on the first 1K images of the test set.
To make sure that we have a close estimate of the true robustness, we evaluate all the models on a wide range of attacks these are described below.
5.1 Evaluation Setup
To accurately gauge the true robustness of our network, we tailor our attack to give the lowest possible adversarial accuracy. The two parts which we tune to get the optimal attack is the loss function for the attack and its corresponding optimization procedure. The loss functions used are described below, for the optimization procedure please refer to Appendix F.1.
Loss Functions: The three loss functions we consider are summarized in Table 1. We use the difference between logits for the loss function rather than the crossentropy loss as we have empirically found the former to yield lower adversarial accuracy.
Attack Name  Loss Function  Metric 

RandomTargeted  Attack Success Rate  
Untargeted  Adversarial Accuracy  
MultiTargeted  Adversarial Accuracy 
5.2 Results for Robustness
CIFAR10: WideResNet288 (8/255)  
Methods  Nominal  FGSM20  Untargeted  [HTML]FFE4B5MultiTargeted 
Attack Strength  Weak  Strong  [HTML]FFE4B5Very Strong  
ADV[16]  87.25%  48.89%  45.92%  [HTML]FFE4B544.54% 
CURE[19]  80.76%  39.76%  38.87%  [HTML]FFE4B537.57% 
ADV(S)  85.11%  56.76%  53.96%  [HTML]FFE4B548.79% 
CURE(S)  84.31%  48.56%  47.28%  [HTML]FFE4B545.43% 
TRADES(S)  87.40%  51.63  50.46%  [HTML]FFE4B549.48% 
LLR (S)  86.83%  54.24%  52.99%  [HTML]FFE4B551.13% 
CIFAR10: WideResNet408 (8/255)  
ADV(R)  85.58%  56.32%  52.34%  [HTML]FFE4B546.89% 
TRADES(R)  86.25%  53.38%  51.76%  [HTML]FFE4B550.84% 
ADV(S)  85.27%  57.94%  55.26%  [HTML]FFE4B549.79% 
CURE(S)  84.45%  49.41%  47.69%  [HTML]FFE4B545.51% 
TRADES(S)  88.11%  53.03%  51.65%  [HTML]FFE4B550.53% 
LLR (S)  86.28%  56.44%  54.95%  [HTML]FFE4B552.81% 
For CIFAR10, the main adversarial accuracy results are given in Table 2. We compare LLR training to ADV [16], CURE [19] and TRADES [28], both with our reimplementation and the published models ^{8}^{8}8Note the network published for TRADES [28] uses a WideResNet3410 so this is not shown in the table but under the same rigorous evaluation we show that TRADES get 84.91% nominal accuracy, 53.41% under Untargeted and 52.58% under MultiTargeted.. Note that our reimplementation using softplus activations perform at or above the published results for ADV, CURE and TRADES. This is largely due to the learning rate schedule used, which is the similar to the one used by TRADES [28].
Interestingly, for adversarial training (ADV), using the MultiTargeted attack for evaluation gives significantly lower adversarial accuracy compared to Untargeted. The accuracy obtained are and respectively. Evaluation using MultiTargeted attack consistently gave the lowest adversarial accuracy throughout. Under this attack, the methods which stand out amongst the rest are LLR and TRADES. Using LLR we get state of the art results with adversarial accuracy.
ImageNet: ResNet152 (4/255)  
Methods  PGD steps  Nominal  [HTML]FFE4B5Untargeted  RandomTargeted 
Accuracy  Success Rate  
ADV  30  69.20%  [HTML]FFE4B539.70%  0.50% 
DENOISE  30  69.70%  [HTML]FFE4B538.90%  0.40% 
LLR  2  72.70%  [HTML]FFE4B547.00%  0.40% 
ImageNet: ResNet152 (16/255)  
ADV [26]  30  64.10%  [HTML]FFE4B56.30%  40.00% 
DENOISE [26]  30  66.80%  [HTML]FFE4B57.50%  38.00% 
LLR  10  51.20%  [HTML]FFE4B56.10%  43.80% 
For ImageNet, we compare against adversarial training (ADV) [16] and the denoising model (DENOISE) [26]. The results are shown in Table 3. For a perturbation radius of 4/255, LLR gets 47% adversarial accuracy under the Untargeted attack which is notably higher than the adversarial accuracy obtained via adversarial training which is 39.70%. Moreover, LLR is trained with just twosteps of PGD rather than 30 steps for adversarial training. The amount of computation needed for each method is further discussed in Sec 5.2.1.
Further shown in Table 3 are the results for . We note a significant drop in nominal accuracy when we train with LLR to perturbation radius 16/255. When testing for perturbation radius of 16/255 we also show that the adversarial accuracy under Untargeted is very poor (below 8%) for all methods. We speculate that this perturbation radius is too large for the robustness problem. Since adversarial perturbations should be, by definition, imperceptible to the human eye, upon inspection of the images generated using an adversarial attack (see Fig 8)  this assumption no longer holds true. The images generated appear to consist of superimposed object parts of other classes onto the target image. This leads us to believe that a more finegrained analysis of what should constitute "robustness for ImageNet" is an important topic for debate.
5.2.1 Runtime Speed
5.2.2 Accuracy Degradation: Strong vs Weak Evaluation
The resulting model trained using LLR degrades gracefully in terms of adversarial accuracy when we increase the strength of attack, as shown in Fig 3. In particular, Fig 2(a) shows that, for CIFAR10, when the attack changes from Untargeted to MultiTargeted, the LLR’s accuracy remains similar with only a drop in accuracy. Contrary to adversarial training (ADV), where we see a drop in accuracy. We also see similar trends in accuracy in Table 2. This could indicate that some level of obfuscation may be happening under standard adversarial training.
As we empirically observe that LLR evaluates similarly under weak and strong attacks, we hypothesize that this is because LLR explicitly linearizes the loss surface. An extreme case would be when the surface is completely linear  in this instance the optimal adversarial perturbation would be found with just one PGD step. Thus evaluation using a weak attack is often good enough to get an accurate gauge of how it will perform under a stronger attack.
For ImageNet, see Fig 2(b), the adversarial accuracy trained using LLR remains significantly higher (7.5%) than the adversarially trained network going from a weak to a stronger attack.
5.3 Resistance to Gradient Obfuscation
We use either the standard adversarial training objective (ADV1, ADV2) or the LLR objective (LLR1, LLR2) and taking one or two steps of PGD to maximize each objective. To train LLR1/2, we only optimize the local linearity , i.e. in Eq. (8) is set to zero. We see that for adversarial training, as shown in Figs 3(a), 3(c), the loss surface becomes highly nonlinear and jagged – in other words obfuscated. Additionally in this setting, the adversarial accuracy under our strongest attack is for both, see Table 6. In contrast, the loss surface is smooth when we train using LLR as shown in Figs 3(b), 3(d). Further, Table 6 shows that we obtain an adversarial accuracy of with the LLR2 network under our strongest evaluation. We also evaluate the values of for the CIFAR10 test set after these networks are trained. This is shown in Fig 7. The values of are comparable when we train with LLR using two steps of PGD to adversarial training with 20 steps of PGD. By comparison, adversarial training with two steps of PGD results in much larger values of .
6 Conclusions
We show that, by promoting linearity, deep classification networks are less susceptible to gradient obfuscation, thus allowing us to do fewer gradient descent steps for the inner optimization. Our novel linearity regularizer promotes locally linear behavior as justified from a theoretical perspective. The resulting models achieve state of the art adversarial robustness on the CIFAR10 and Imagenet datasets, and can be trained faster than regular adversarial training.
References
 [1] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.
 [2] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot way to resist adversarial examples. arXiv, 2018.

[3]
Nicholas Carlini and David Wagner.
Adversarial examples are not easily detected: Bypassing ten detection
methods.
In
Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security
, pages 3–14. ACM, 2017.  [4] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[5]
Jia Deng, Wei Dong, Richard Socher, LiJia Li, Kai Li, and Li FeiFei.
Imagenet: A largescale hierarchical image database.
In
2009 IEEE conference on computer vision and pattern recognition
, pages 248–255. Ieee, 2009.  [6] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning for robust adversarial defense. arXiv preprint arXiv:1803.01442, 2018.
 [7] Gavin Weiguang Ding, Yash Sharma, Kry Yik Chau Lui, and Ruitong Huang. Maxmargin adversarial (mma) training: Direct input space margin maximization through adversarial training. arXiv preprint arXiv:1812.02637, 2018.
 [8] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.
 [9] Google. Google, 2018. In https://cloud.google.com/tpu/, 2019.
 [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
 [11] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt solver for verifying deep neural networks. In International Conference on Computer Aided Verification, pages 97–117. Springer, 2017.
 [12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
 [13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. In Citeseer, 2009.
 [14] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236, 2016.
 [15] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wijewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, and James Bailey. Characterizing adversarial subspaces using local intrinsic dimensionality. arXiv preprint arXiv:1801.02613, 2018.
 [16] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.
 [17] James Martens. Deep learning via hessianfree optimization. In ICML, volume 27, pages 735–742, 2010.
 [18] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193, 2014.
 [19] SeyedMohsen MoosaviDezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robustness via curvature regularization, and vice versa. arXiv preprint arXiv:1811.09716, 2018.
 [20] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation as a defense to adversarial perturbations against deep neural networks. In 2016 IEEE Symposium on Security and Privacy (SP), pages 582–597. IEEE, 2016.
 [21] Nicol N Schraudolph. Fast curvature matrixvector products for secondorder gradient descent. Neural computation, 14(7):1723–1738, 2002.
 [22] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging generative models to understand and defend against adversarial examples. arXiv preprint arXiv:1710.10766, 2017.
 [23] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.
 [24] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. stat, 1050:11, 2018.
 [25] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial risk and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.
 [26] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan Yuille, and Kaiming He. Feature denoising for improving adversarial robustness. arXiv preprint arXiv:1812.03411, 2018.
 [27] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
 [28] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan. Theoretically principled tradeoff between robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.
Appendix A Empirical Observations on Adversarial Training: Supplementary
CIFAR10: WideResNet2810 (8/255)  

No. of PGD step  Nominal Accuracy  Adversarial Accuracy (MultiTargeted) 
1  84.42%  0.0% 
2  83.67%  0.0% 
4  87.70%  45.91% 
8  87.20%  46.03% 
16  86.78%  46.14% 
Appendix B Local Linearity Upper Bounds Robustness: Proof of Proposition 4.1
Proposition 4.1. Consider a loss function that is oncedifferentiable, and a local neighbourhood defined by . Then for all
Proof.
Firstly we note that can be rewritten as the following:
Thus we can form the following bound:
where . We note that since therefore for all
∎
Appendix C Local Linearity is a sufficient regularizer by itself
c.1 A local quadratic model of the loss
The starting point for proving our bounds will be the following local quadratic approximation of the loss:
(9) 
Here, is the Generalized GaussNewton matrix (GGN) [21, 18], and denotes the error of the approximation.
The GGN is a Hessianalternative which appears frequently in approximate 2ndorder optimization algorithms for neural networks. It is defined for losses of the form , where is convex in . (Valid examples for include the standard softmax crossentropy error and squared error.) It’s given by
where is the Jacobian of , and is the Hessian of with respect to .
One interpretation of the GGN is that it’s the Hessian of a modified loss , where is the local linear approximation of (given by ). For certain standard loss functions (including the ones we consider) it also corresponds to the Fisher Information Matrix associated with the network’s predictive distribution [18].
In the context of optimization, the local quadratic approximation induced by the GGN tends to work better than the actual 2ndorder Taylor series [e.g. 17], perhaps because it gives a better approximation to over nontrivial distances [18]. (It must necessarily be a worse approximation for very small values of , since the 2ndorder Taylor series is clearly optimal in that respect.)
c.2 Bounds for common loss functions
Our basic strategy in proving the following results is to rearrange Eq (9) to establish the following bound on the curvature in terms of which is defined in Eq (5) in the main text:
(10)  
We then show that for both the squared error and softmax crossentropy loss functions, one can bound in terms of the curvature and by extension is bounded by the local linearity measure: . Note that such a bound won’t exist for general loss functions.
Proposition C.1.
Suppose that is the squared error and is the output of the neural network. Then for any perturbation vector we have
where is the error of the local quadratic approximation defined in Equation 9.
Proposition C.2.
Suppose that is the softmax crossentropy error, where is a 1hot target vector, and
is the vector of probabilities computed via the softmax function. Then for any perturbation vector
we havewhere is the error of the local quadratic approximation defined in Equation 9.
Remark.
We note is just the probability of the target label under the model. And so won’t be very big, provided that the model is properly classifying the data with some reasonable degree of certainty. (Indeed, for highly certain predictions it will be close to .) Thus the upper bound given in Proposition C.2 should shrink at a reasonable rate as the regularizer does, provided that error term is negligable.
Appendix D Proofs
d.1 Proof of Proposition c.1
Proof.
For convenience we will write , where we have defined .
We observe that for the squared error loss, and (because ).
Thus by Equation 10 we have
Using these facts, and applying the CauchySchwarz inequality, we get
Taking the square root of both sides yields the claim. ∎
d.2 Proof of Proposition c.2
Proof.
We begin by defining , and observing that for the softmax crossentropy loss, , and where
Because the entries of are nonnegative and sum to we can factor this as
and where is defined as the entrywise square root of the vector . To see that this is correct, note that
where we have used the properties of and , such as , , etc.
Using this factorization we can rewrite the curvature term as
where we have defined (intuitively, this is “the change in due to ”). Thus by Equation 10 we have
Let , which is well defined because is entrywise positive (since must be), and is a onehot vector. Using said properties of and we have that
where denotes the entrywise product.
It thus follows that
Using the above facts, and applying the CauchySchwarz inequality, we arrive at
where we have used the facts that and . Taking the square root of both sides yields the claim. ∎
Appendix E Local Linearity Regularizer  Algorithm
Note .
Appendix F Experiments and Results: Supplementary
f.1 Evaluation Setup
Optimization: Rather than using the sign of the gradient (FGSM) [8], we do the update steps using Adam [12] as the optimizer. More concretely, the update on the adversarial perturbation is . We have consistently found that using Adam gives a stronger attack compared to the sign of the gradient. For MultiTargeted (see Table 1), the step size is set to be and we run for 200 steps. For Untargeted and RandomTargeted, we use a step size schedule setting up until 100 steps then 0.01 up until 150 steps and 0.001 for the last 50 steps. We find these to give us the best adversarial accuracy evaluation, the decrease in step size is especially helpful in cases where the gradient is obfuscated. Furthermore, we use 20 different random initialization (we term this a random restart) of the perturbation, , for going through the optimization procedure. We consider an attack successful if any of these 20 random restarts is successful. For CIFAR10 we also show results for FGSM with 20 steps (FGSM20) with a step size as this is a commonly used attack for evaluation.
f.2 Training and Hyperparameters
Cifar10:
For all of the baselines we recreated and the LLR network we used the same schedule which is inspired by TRADES [28]. For WideResNet288, we use initial learning rate 0.1 and we decrease after 100 and 105 epochs. We train till 110 epochs. For WideResNet408 we use initial learning rate 0.1 and we decrease after 100 and 105 epochs with a factor of 0.1. We train to 110 epochs. The optimizer we used momentum 0.9. For LLR the and , the weight placed on the nominal loss is also 2. We use regularization of 2e4. The training is done on a batch size of 256. We also slowly increase the size of the perturbation radius over 15 epochs starting from 0.0 until it gets to 8/255. For WideResNet288, WideResNet408 we train with 10 and 15 steps of PGD respectively using Adam with step size of 0.1.
ImageNet (4/255):
To train the LLR network the initial learning rate is 0.1, the decay schedule is similar to [26]
, we decay by 0.1 after 35, 70 and 95 epochs. We train for 100 epochs. The LLR hyperparameters are
and , the weights placed on the nominal loss is 3. We use regularization of 1e4. The training is done on batch size of 512. We slowly increase the perturbation radius over 20 epochs from 0 to 4/255. We train with 2 steps of PGD using Adam and step size 0.1.ImageNet (16/255):
To train the LLR network the initial learning rate is 0.1, we decay by 0.1 after 17 and 35 epochs and 50 epochs – we train to 55 epochs. The LLR hyperparameters are and , the weights placed on the nominal loss is 3. We use regularization of 1e4. The training is done on batch size of 512. We slowly increase the perturbation radius over 90 epochs from 0 to 16/255. We train with 10 steps of PGD using Adam with step size of 0.1.
Batch Normalization
During training we use the local batch statistics at the nominal point. Suppose denotes the local batch statistics at every layer of the network for point . Let us also denote to be the loss function corresponding to when we use batch statistics and . Then the loss we calculate at train time is the following
where and
f.3 Ablation Studies
CIFAR10: WideResNet288 (8/255)  
Regularizer  Nominal  Untargeted  MultiTargeted 
Accuracy  
84.75%  50.42%  49.38%  
86.83%  52.99%  51.13%  
ImageNet: ResNet152 (4/255)  
Regularizer  Nominal  Untargeted  RandomTargeted 
Accuracy  Success Rate  
71.40%  41.30%  1.90%  
72.70%  47.00%  0.40% 
We investigate the effects of adding the term into LLR shown in Eq. (8). The results are shown in Table 5. We can see that adding the term only yields minor improvements to the adversarial accuracy (49.38% vs 51.13%) for CIFAR10, while we get a boost of almost 6% adversarial accuracy for ImageNet (41.30% vs 47.00%).
f.4 Resistance to Gradient Obfuscation
CIFAR10: WideResNet288 (8/255)  
Methods  PGD steps  Nominal  Untargeted  MultiTargeted 
ADV1  1  88.45%  0.00%  0.00% 
ADV2  2  76.63%  0.00%  0.00% 
LLR1  1  93.03%  1.80%  1.60% 
LLR2  2  90.46%  46.47%  44.50% 
In Fig 7 we show the adversarial perturbations for networks ADV2 and LLR2. We see that, in contrast to LLR2, the adversarial perturbation for ADV2 looks similar to random noise. When the adversarial perturbation resembles random noise, this is often a sign that the network is gradient obfuscated.
Furthermore, we show that the adversarial accuracy for LLR2 is 44.50% as opposed to ADV2 which is 0%. Surprisingly, even training with just 1 step of PGD for LLR (LLR1) we obtain nonzero adversarial accuracy.
In Fig 7, we show the values of we obtain when we train with LLR or adversarial training (ADV). To find we maximize by running 50 steps of PGD with step size 0.1. Here, we see that values of for adversarial training with 20 steps of PGD is similar to LLR2. In contrast, adversarial training (ADV2) with just two steps of PGD gives much higher values of .
f.5 Adversarially Perturbed Images for 16/255
The perturbation radius 16/255 has become the norm [14, 26] to use to gauge how robust a network is on ImageNet. However, to be robust we need to make sure that the perturbation is sufficiently small such that it does not significantly affect our visual perception. We hypothesize that this perturbation radius is outside of this regime. Fig 8 shows that we can find examples which not only wipe out objects (the curbs) in the image, but can actually add faint images onto the white background. This significantly affects our visual perception of the image.
Comments
There are no comments yet.