Adversarial point set registration

11/20/2018
by   Sergei Divakov, et al.
10

We present a novel approach to point set registration which is based on one-shot adversarial learning. The idea of the algorithm is inspired by recent successes of generative adversarial networks. Treating the point clouds as three-dimensional probability distributions, we develop a one-shot adversarial optimization procedure, in which we train a critic neural network to distinguish between source and target point sets, while simultaneously learning the parameters of the transformation to trick the critic into confusing the points. In contrast to most existing algorithms for point set registration, ours does not rely on any correspondences between the point clouds. We demonstrate the performance of the algorithm on several challenging benchmarks and compare it to the existing baselines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro