Adversarial Online Learning with noise

10/22/2018
by   Alon Resler, et al.
0

We present and study models of adversarial online learning where the feedback observed by the learner is noisy, and the feedback is either full information feedback or bandit feedback. Specifically, we consider binary losses xored with the noise, which is a Bernoulli random variable. We consider both a constant noise rate and a variable noise rate. Our main results are tight regret bounds for leaning with noise in the adversarial online learning model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro