Adversarial Imitation Learning via Random Search

08/21/2020 ∙ by MyungJae Shin, et al. ∙ 0

Developing agents that can perform challenging complex tasks is the goal of reinforcement learning. The model-free reinforcement learning has been considered as a feasible solution. However, the state of the art research has been to develop increasingly complicated techniques. This increasing complexity makes the reconstruction difficult. Furthermore, the problem of reward dependency is still exists. As a result, research on imitation learning, which learns policy from a demonstration of experts, has begun to attract attention. Imitation learning directly learns policy based on data on the behavior of the experts without the explicit reward signal provided by the environment. However, imitation learning tries to optimize policies based on deep reinforcement learning such as trust region policy optimization. As a result, deep reinforcement learning based imitation learning also poses a crisis of reproducibility. The issue of complex model-free model has received considerable critical attention. A derivative-free optimization based reinforcement learning and the simplification on policies obtain competitive performance on the dynamic complex tasks. The simplified policies and derivative free methods make algorithm be simple. The reconfiguration of research demo becomes easy. In this paper, we propose an imitation learning method that takes advantage of the derivative-free optimization with simple linear policies. The proposed method performs simple random search in the parameter space of policies and shows computational efficiency. Experiments in this paper show that the proposed model, without a direct reward signal from the environment, obtains competitive performance on the MuJoCo locomotion tasks.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.