Advancing Volumetric Medical Image Segmentation via Global-Local Masked Autoencoder

06/15/2023
by   Jia-Xin Zhuang, et al.
0

Masked autoencoder (MAE) has emerged as a promising self-supervised pretraining technique to enhance the representation learning of a neural network without human intervention. To adapt MAE onto volumetric medical images, existing methods exhibit two challenges: first, the global information crucial for understanding the clinical context of the holistic data is lacked; second, there was no guarantee of stabilizing the representations learned from the randomly masked inputs. To tackle these limitations, we proposed Global-Local Masked AutoEncoder (GL-MAE), a simple yet effective self-supervised pre-training strategy. GL-MAE reconstructs both the masked global and masked local volumes, which enables learning the essential local details as well as the global context. We further introduced global-to-global consistency and local-to-global correspondence via global-guided consistency learning to enhance and stabilize the representation learning of the masked volumes. Finetuning results on multiple datasets illustrate the superiority of our method over other state-of-the-art self-supervised algorithms, demonstrating its effectiveness on versatile volumetric medical image segmentation tasks, even when annotations are scarce. Codes and models will be released upon acceptance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset