Advances in Probabilistic Reasoning

03/20/2013 ∙ by Dan Geiger, et al. ∙ 0

This paper discuses multiple Bayesian networks representation paradigms for encoding asymmetric independence assertions. We offer three contributions: (1) an inference mechanism that makes explicit use of asymmetric independence to speed up computations, (2) a simplified definition of similarity networks and extensions of their theory, and (3) a generalized representation scheme that encodes more types of asymmetric independence assertions than do similarity networks.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.