Admissible Hierarchical Clustering Methods and Algorithms for Asymmetric Networks
This paper characterizes hierarchical clustering methods that abide by two previously introduced axioms -- thus, denominated admissible methods -- and proposes tractable algorithms for their implementation. We leverage the fact that, for asymmetric networks, every admissible method must be contained between reciprocal and nonreciprocal clustering, and describe three families of intermediate methods. Grafting methods exchange branches between dendrograms generated by different admissible methods. The convex combination family combines admissible methods through a convex operation in the space of dendrograms, and thirdly, the semi-reciprocal family clusters nodes that are related by strong cyclic influences in the network. Algorithms for the computation of hierarchical clusters generated by reciprocal and nonreciprocal clustering as well as the grafting, convex combination, and semi-reciprocal families are derived using matrix operations in a dioid algebra. Finally, the introduced clustering methods and algorithms are exemplified through their application to a network describing the interrelation between sectors of the United States (U.S.) economy.
READ FULL TEXT