Adjoint-based Data Assimilation of an Epidemiology Model for the Covid-19 Pandemic in 2020

03/29/2020
by   Jörn Lothar Sesterhenn, et al.
0

Data assimilation is used to optimally fit a classical epidemiology model to the Johns Hopkins data of the Covid-19 pandemic. The optimisation is based on the confirmed cases and confirmed deaths. This is the only data available with reasonable accuracy. Infection and recovery rates can be infered from the model as well as the model parameters. The parameters can be linked with government actions or events like the end of the holiday season. Based on this numbers predictions for the future can be made and control targets specified. With other words: We look for a solution to a given model which fits the given data in an optimal sense. Having that solution, we have all parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro