Addressing Cold Start Problem for End-to-end Automatic Speech Scoring
Integrating automatic speech scoring/assessment systems has become a critical aspect of second-language speaking education. With self-supervised learning advancements, end-to-end speech scoring approaches have exhibited promising results. However, this study highlights the significant decrease in the performance of speech scoring systems in new question contexts, thereby identifying this as a cold start problem in terms of items. With the finding of cold-start phenomena, this paper seeks to alleviate the problem by following methods: 1) prompt embeddings, 2) question context embeddings using BERT or CLIP models, and 3) choice of the pretrained acoustic model. Experiments are conducted on TOEIC speaking test datasets collected from English-as-a-second-language (ESL) learners rated by professional TOEIC speaking evaluators. The results demonstrate that the proposed framework not only exhibits robustness in a cold-start environment but also outperforms the baselines for known content.
READ FULL TEXT