Addressing Bias in Visualization Recommenders by Identifying Trends in Training Data: Improving VizML Through a Statistical Analysis of the Plotly Community Feed

03/09/2022
by   Allen Tu, et al.
0

Machine learning is a promising approach to visualization recommendation due to its high scalability and representational power. Researchers can create a neural network to predict visualizations from input data by training it over a corpus of datasets and visualization examples. However, these machine learning models can reflect trends in their training data that may negatively affect their performance. Our research project aims to address training bias in machine learning visualization recommendation systems by identifying trends in the training data through statistical analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro