Additive Sparsification of CSPs

06/28/2021 ∙ by Eden Pelleg, et al. ∙ 0

Multiplicative cut sparsifiers, introduced by Benczúr and Karger [STOC'96], have proved extremely influential and found various applications. Precise characterisations were established for sparsifiability of graphs with other 2-variable predicates on Boolean domains by Filtser and Krauthgamer [SIDMA'17] and non-Boolean domains by Butti and Živný [SIDMA'20]. Bansal, Svensson and Trevisan [FOCS'19] introduced a weaker notion of sparsification termed "additive sparsification", which does not require weights on the edges of the graph. In particular, Bansal et al. designed algorithms for additive sparsifiers for cuts in graphs and hypergraphs. As our main result, we establish that all Boolean Constraint Satisfaction Problems (CSPs) admit an additive sparsifier; that is, for every Boolean predicate P:{0,1}^k→{0,1} of a fixed arity k, we show that CSP(P) admits an additive sparsifier. Under our newly introduced notion of all-but-one sparsification for non-Boolean predicates, we show that CSP(P) admits an additive sparsifier for any predicate P:D^k→{0,1} of a fixed arity k on an arbitrary finite domain D.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.