Addendum to: Summary Information for Reasoning About Hierarchical Plans

08/09/2017 ∙ by Lavindra de Silva, et al. ∙ 0

Hierarchically structured agent plans are important for efficient planning and acting, and they also serve (among other things) to produce "richer" classical plans, composed not just of a sequence of primitive actions, but also "abstract" ones representing the supplied hierarchies. A crucial step for this and other approaches is deriving precondition and effect "summaries" from a given plan hierarchy. This paper provides mechanisms to do this for more pragmatic and conventional hierarchies than in the past. To this end, we formally define the notion of a precondition and an effect for a hierarchical plan; we present data structures and algorithms for automatically deriving this information; and we analyse the properties of the presented algorithms. We conclude the paper by detailing how our algorithms may be used together with a classical planner in order to obtain abstract plans.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.