Adaptive Single- and Multilevel Stochastic Collocation Methods for Uncertain Gas Transport in Large-Scale Networks

12/07/2020
by   Jens Lang, et al.
0

In this paper, we are concerned with the quantification of uncertainties that arise from intra-day oscillations in the demand for natural gas transported through large-scale networks. The short-term transient dynamics of the gas flow is modelled by a hierarchy of hyperbolic systems of balance laws based on the isentropic Euler equations. We extend a novel adaptive strategy for solving elliptic PDEs with random data, recently proposed and analysed by Lang, Scheichl, and Silvester [J. Comput. Phys., 419:109692, 2020], to uncertain gas transport problems. Sample-dependent adaptive meshes and a model refinement in the physical space is combined with adaptive anisotropic sparse Smolyak grids in the stochastic space. A single-level approach which balances the discretization errors of the physical and stochastic approximations and a multilevel approach which additionally minimizes the computational costs are considered. Two examples taken from a public gas library demonstrate the reliability of the error control of expectations calculated from random quantities of interest, and the further use of stochastic interpolants to, e.g., approximate probability density functions of minimum and maximum pressure values at the exits of the network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset