Adaptive Representation Selection in Contextual Bandit with Unlabeled History
We consider an extension of the contextual bandit setting, motivated by several practical applications, where an unlabeled history of contexts can become available for pre-training before the online decision-making begins. We propose an approach for improving the performance of contextual bandit in such setting, via adaptive, dynamic representation learning, which combines offline pre-training on unlabeled history of contexts with online selection and modification of embedding functions. Our experiments on a variety of datasets and in different nonstationary environments demonstrate clear advantages of our approach over the standard contextual bandit.
READ FULL TEXT