DeepAI AI Chat
Log In Sign Up

Adaptive local minimax Galerkin methods for variational problems

by   Pascal Heid, et al.
Universität Bern

In many applications of practical interest, solutions of partial differential equation models arise as critical points of an underlying (energy) functional. If such solutions are saddle points, rather than being maxima or minima, then the theoretical framework is non-standard, and the development of suitable numerical approximation procedures turns out to be highly challenging. In this paper, our aim is to present an iterative discretization methodology for the numerical solution of nonlinear variational problems with multiple (saddle point) solutions. In contrast to traditional numerical approximation schemes, which typically fail in such situations, the key idea of the current work is to employ a simultaneous interplay of a previously developed local minimax approach and adaptive Galerkin discretizations. We thereby derive an adaptive local minimax Galerkin (LMMG) method, which combines the search for saddle point solutions and their approximation in finite-dimensional spaces in a highly effective way. Under certain assumptions, we will prove that the generated sequence of approximate solutions converges to the solution set of the variational problem. This general framework will be applied to the specific context of finite element discretizations of (singularly perturbed) semilinear elliptic boundary value problems, and a series of numerical experiments will be presented.


page 1

page 2

page 3

page 4


Discontinuous Galerkin Finite Element Methods for the Landau-de Gennes Minimization Problem of Liquid Crystals

We consider a system of second order non-linear elliptic partial differe...

Galerkin Neural Networks: A Framework for Approximating Variational Equations with Error Control

We present a new approach to using neural networks to approximate the so...

Galerkin Finite Element Method for Nonlinear Riemann-Liouville and Caputo Fractional Equations

In this paper, we study the existence, regularity, and approximation of ...

A C^1 Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence

In this paper, we present and study C^1 Petrov-Galerkin and Gauss colloc...

Stochastic phase-field modeling of brittle fracture: computing multiple crack patterns and their probabilities

In variational phase-field modeling of brittle fracture, the functional ...

Data-driven Evolutions of Critical Points

In this paper we are concerned with the learnability of energies from da...