Adaptive Interpolatory MOR by Learning the Error Estimator in the Parameter Domain

by   Sridhar Chellappa, et al.

Interpolatory methods offer a powerful framework for generating reduced-order models (ROMs) for non-parametric or parametric systems with time-varying inputs. Choosing the interpolation points adaptively remains an area of active interest. A greedy framework has been introduced in Feng et al. [ESAIM: Math. Model. Numer. Anal. 51(6), 2017] and in Feng and Benner [IEEE Trans. Microw. Theory Techn. 67(12), 2019] to choose interpolation points automatically using a posteriori error estimators. Nevertheless, when the parameter range is large or if the parameter space dimension is larger than two, the greedy algorithm may take considerable time, since the training set needs to include a considerable number of parameters. As a remedy, we introduce an adaptive training technique by learning an efficient a posteriori error estimator over the parameter domain. A fast learning process is created by interpolating the error estimator using radial basis functions (RBF) over a fine parameter training set, representing the whole parameter domain. The error estimator is evaluated only on a coarse training set including a few parameter samples. The algorithm is an extension of the work in Chellappa et al. [arXiv e-prints 1910.00298] to interpolatory model order reduction (MOR) in frequency domain. Beyond this work, we use a newly proposed inf-sup-constant-free error estimator in the frequency domain, which is often much tighter than the error estimator using the inf-sup constant.


page 1

page 2

page 3

page 4


An Adaptive Sampling Approach for the Reduced Basis Method

The offline time of the reduced basis method can be very long given a la...

An Adaptive Pole-Matching Method for Interpolating Reduced-Order Models

An adaptive parametric reduced-order modeling method based on interpolat...

Inf-Sup-Constant-Free State Error Estimator for Model Order Reduction of Parametric Systems in Electromagnetics

A reliable model order reduction process for parametric analysis in elec...

A Training Set Subsampling Strategy for the Reduced Basis Method

We present a subsampling strategy for the offline stage of the Reduced B...

Multi-level adaptive greedy algorithms for the reduced basis method

The reduced basis method (RBM) empowers repeated and rapid evaluation of...

Evaluating Parameter Efficient Learning for Generation

Parameter efficient learning methods (PERMs) have recently gained signif...

Parametric Dynamic Mode Decomposition for nonlinear parametric dynamical systems

A non-intrusive model order reduction (MOR) method that combines feature...

Please sign up or login with your details

Forgot password? Click here to reset