Adaptive Independent Sticky MCMC algorithms

08/17/2013
by   L. Martino, et al.
0

In this work, we introduce a novel class of adaptive Monte Carlo methods, called adaptive independent sticky MCMC algorithms, for efficient sampling from a generic target probability density function (pdf). The new class of algorithms employs adaptive non-parametric proposal densities which become closer and closer to the target as the number of iterations increases. The proposal pdf is built using interpolation procedures based on a set of support points which is constructed iteratively based on previously drawn samples. The algorithm's efficiency is ensured by a test that controls the evolution of the set of support points. This extra stage controls the computational cost and the convergence of the proposal density to the target. Each part of the novel family of algorithms is discussed and several examples are provided. Although the novel algorithms are presented for univariate target densities, we show that they can be easily extended to the multivariate context within a Gibbs-type sampler. The ergodicity is ensured and discussed. Exhaustive numerical examples illustrate the efficiency of sticky schemes, both as a stand-alone methods to sample from complicated one-dimensional pdfs and within Gibbs in order to draw from multi-dimensional target distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro