Adaptive Graph Auto-Encoder for General Data Clustering
Graph based clustering plays an important role in clustering area. Recent studies about graph convolution neural networks have achieved impressive success on graph type data. However, in traditional clustering tasks, the graph structure of data does not exist such that the strategy to construct graph is crucial for performance. In addition, the existing graph auto-encoder based approaches perform poorly on weighted graph, which is widely used in graph based clustering. In this paper, we propose a graph auto-encoder with local structure preserving for general data clustering, which can update the constructed graph adaptively. The adaptive process is designed to utilize the non-Euclidean structure sufficiently. By combining generative model for graph embedding and graph based clustering, a graph auto-encoder with a novel decoder is developed and it performs well in weighted graph used scenarios. Extensive experiments prove the superiority of our model.
READ FULL TEXT