Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion

03/15/2012
by   Takanori Sugiyama, et al.
0

We consider 1-qubit mixed quantum state estimation by adaptively updating measurements according to previously obtained outcomes and measurement settings. Updates are determined by the average-variance-optimality (A-optimality) criterion, known in the classical theory of experimental design and applied here to quantum state estimation. In general, A-optimization is a nonlinear minimization problem; however, we find an analytic solution for 1-qubit state estimation using projective measurements, reducing computational effort. We compare numerically two adaptive and two nonadaptive schemes for finite data sets and show that the A-optimality criterion gives more precise estimates than standard quantum tomography.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro