Active Learning of Halfspaces under a Margin Assumption

12/07/2011 ∙ by Alon Gonen, et al. ∙ 0

We derive and analyze a new, efficient, pool-based active learning algorithm for halfspaces, called ALuMA. Most previous algorithms show exponential improvement in the label complexity assuming that the distribution over the instance space is close to uniform. This assumption rarely holds in practical applications. Instead, we study the label complexity under a large-margin assumption -- a much more realistic condition, as evident by the success of margin-based algorithms such as SVM. Our algorithm is computationally efficient and comes with formal guarantees on its label complexity. It also naturally extends to the non-separable case and to non-linear kernels. Experiments illustrate the clear advantage of ALuMA over other active learning algorithms.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.