Active Learning in the Predict-then-Optimize Framework: A Margin-Based Approach

05/11/2023
by   Mo Liu, et al.
0

We develop the first active learning method in the predict-then-optimize framework. Specifically, we develop a learning method that sequentially decides whether to request the "labels" of feature samples from an unlabeled data stream, where the labels correspond to the parameters of an optimization model for decision-making. Our active learning method is the first to be directly informed by the decision error induced by the predicted parameters, which is referred to as the Smart Predict-then-Optimize (SPO) loss. Motivated by the structure of the SPO loss, our algorithm adopts a margin-based criterion utilizing the concept of distance to degeneracy and minimizes a tractable surrogate of the SPO loss on the collected data. In particular, we develop an efficient active learning algorithm with both hard and soft rejection variants, each with theoretical excess risk (i.e., generalization) guarantees. We further derive bounds on the label complexity, which refers to the number of samples whose labels are acquired to achieve a desired small level of SPO risk. Under some natural low-noise conditions, we show that these bounds can be better than the naive supervised learning approach that labels all samples. Furthermore, when using the SPO+ loss function, a specialized surrogate of the SPO loss, we derive a significantly smaller label complexity under separability conditions. We also present numerical evidence showing the practical value of our proposed algorithms in the settings of personalized pricing and the shortest path problem.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
07/16/2012

Surrogate Losses in Passive and Active Learning

Active learning is a type of sequential design for supervised machine le...
research
06/14/2019

Online Active Learning of Reject Option Classifiers

Active learning is an important technique to reduce the number of labele...
research
08/19/2021

Risk Bounds and Calibration for a Smart Predict-then-Optimize Method

The predict-then-optimize framework is fundamental in practical stochast...
research
07/06/2023

Understanding Uncertainty Sampling

Uncertainty sampling is a prevalent active learning algorithm that queri...
research
10/03/2021

Active Learning for Contextual Search with Binary Feedbacks

In this paper, we study the learning problem in contextual search, which...
research
05/27/2019

Generalization Bounds in the Predict-then-Optimize Framework

The predict-then-optimize framework is fundamental in many practical set...
research
06/29/2015

S2: An Efficient Graph Based Active Learning Algorithm with Application to Nonparametric Classification

This paper investigates the problem of active learning for binary label ...

Please sign up or login with your details

Forgot password? Click here to reset