Active Convolution: Learning the Shape of Convolution for Image Classification

03/27/2017
by   Yunho Jeon, et al.
0

In recent years, deep learning has achieved great success in many computer vision applications. Convolutional neural networks (CNNs) have lately emerged as a major approach to image classification. Most research on CNNs thus far has focused on developing architectures such as the Inception and residual networks. The convolution layer is the core of the CNN, but few studies have addressed the convolution unit itself. In this paper, we introduce a convolution unit called the active convolution unit (ACU). A new convolution has no fixed shape, because of which we can define any form of convolution. Its shape can be learned through backpropagation during training. Our proposed unit has a few advantages. First, the ACU is a generalization of convolution; it can define not only all conventional convolutions, but also convolutions with fractional pixel coordinates. We can freely change the shape of the convolution, which provides greater freedom to form CNN structures. Second, the shape of the convolution is learned while training and there is no need to tune it by hand. Third, the ACU can learn better than a conventional unit, where we obtained the improvement simply by changing the conventional convolution to an ACU. We tested our proposed method on plain and residual networks, and the results showed significant improvement using our method on various datasets and architectures in comparison with the baseline.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
11/11/2018

Integrating Multiple Receptive Fields through Grouped Active Convolution

Convolutional networks have achieved great success in various vision tas...
research
04/15/2019

LeanResNet: A Low-cost yet Effective Convolutional Residual Networks

Convolutional Neural Networks (CNNs) filter the input data using a serie...
research
11/30/2015

Design of Kernels in Convolutional Neural Networks for Image Classification

Despite the effectiveness of Convolutional Neural Networks (CNNs) for im...
research
05/24/2019

Training decision trees as replacement for convolution layers

We present an alternative layer to convolution layers in convolutional n...
research
12/04/2019

Deep Morphological Hit-or-Miss Transform Neural Network

Neural networks have demonstrated breakthrough results in numerous appli...
research
11/08/2017

Deep Hyperspherical Learning

Convolution as inner product has been the founding basis of convolutiona...
research
01/01/2023

GoogLe2Net: Going Transverse with Convolutions

Capturing feature information effectively is of great importance in visi...

Please sign up or login with your details

Forgot password? Click here to reset