Action recognition by learning pose representations
Pose detection is one of the fundamental steps for the recognition of human actions. In this paper we propose a novel trainable detector for recognizing human poses based on the analysis of the skeleton. The main idea is that a skeleton pose can be described by the spatial arrangements of its joints. Starting from this consideration, we propose a trainable pose detector, that can be configured on a prototype skeleton in an automatic configuration process. The result of the configuration is a model of the position of the joints in the concerned skeleton. In the application phase, the joint positions contained in the model are compared with the ones of their homologous joints in the skeleton under test. The similarity of two skeletons is computed as a combination of the position scores achieved by homologous joints. In this paper we describe an action classification method based on the use of the proposed trainable detectors to extract features from the skeletons. We performed experiments on the publicly available MSDRA data set and the achieved results confirm the effectiveness of the proposed approach.
READ FULL TEXT