Acoustic-To-Word Model Without OOV
Recently, the acoustic-to-word model based on the Connectionist Temporal Classification (CTC) criterion was shown as a natural end-to-end model directly targeting words as output units. However, this type of word-based CTC model suffers from the out-of-vocabulary (OOV) issue as it can only model limited number of words in the output layer and maps all the remaining words into an OOV output node. Therefore, such word-based CTC model can only recognize the frequent words modeled by the network output nodes. It also cannot easily handle the hot-words which emerge after the model is trained. In this study, we improve the acoustic-to-word model with a hybrid CTC model which can predict both words and characters at the same time. With a shared-hidden-layer structure and modular design, the alignments of words generated from the word-based CTC and the character-based CTC are synchronized. Whenever the acoustic-to-word model emits an OOV token, we back off that OOV segment to the word output generated from the character-based CTC, hence solving the OOV or hot-words issue. Evaluated on a Microsoft Cortana voice assistant task, the proposed model can reduce the errors introduced by the OOV output token in the acoustic-to-word model by 30
READ FULL TEXT