Achieving Optimal Backlog in Multi-Processor Cup Games

04/05/2019
by   Michael A. Bender, et al.
0

The single- and multi- processor cup games can be used to model natural problems in areas such as processor scheduling, deamortization, and buffer management. At the beginning of the single-processor cup game, n cups are initially empty. In each step of the game, a filler distributes 1 unit of water among the cups, and then an emptier selects a cup and removes 1 + ϵ units from that cup. The goal of the emptier is to minimize the amount of water in the fullest cup, also known as the backlog. It is known that the greedy algorithm (i.e., empty the fullest cup) achieves backlog O( n), and that no deterministic algorithm can do better. We show that the performance of the greedy algorithm can be greatly improved with a small amount of randomization: After any step i, and for any k >Ω(ϵ^-1), the emptier achieves backlog at most O(k) with probability at least 1 -O(2^-2^k). Whereas bounds for the single-processor cup game have been known for more than fifteen years, proving nontrivial bounds on backlog for the multi-processor extension has remained open. We present a simple analysis of the greedy algorithm for the multi-processor cup game, establishing a backlog of O(ϵ^-1 n), as long as δ, the game's other speed-augmentation constant, is at least 1/poly(n). Turning to randomized algorithms, we encounter an unexpected phenomenon: When the number of processors p is large, the backlog after each step drops to constant with large probability. Specifically, we show that if δ and ϵ satisfy reasonable constraints, then there exists an algorithm that bounds the backlog after a given step by three or less with probability at least 1 - O((-Ω(ϵ^2 p)). We further extend the guarantees of our randomized algorithm to consider larger backlogs.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
10/29/2019

Achieving Optimal Backlog in the Vanilla Multi-Processor Cup Game

In each step of the p-processor cup game on n cups, a filler distributes...
research
11/30/2020

The Variable-Processor Cup Game

The problem of scheduling tasks on p processors so that no task ever get...
research
04/12/2021

How Asymmetry Helps Buffer Management: Achieving Optimal Tail Size in Cup Games

The cup game on n cups is a multi-step game with two players, a filler a...
research
05/03/2022

Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game

The p-processor cup game is a classic and widely studied scheduling prob...
research
11/22/2017

Deterministic parallel algorithms for bilinear objective functions

Many randomized algorithms can be derandomized efficiently using either ...
research
03/09/2023

Computational bounds for the 2048 game

2048 is a single player video game, played by millions mostly on mobile ...
research
03/17/2017

Chaotic-Based Processor for Communication and Multimedia Applications

Chaos is a phenomenon that attracted much attention in the past ten year...

Please sign up or login with your details

Forgot password? Click here to reset