Achieving Equalized Odds by Resampling Sensitive Attributes
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness. This is achieved by introducing a general discrepancy functional that rigorously quantifies violations of this criterion. This differentiable functional is used as a penalty driving the model parameters towards equalized odds. To rigorously evaluate fitted models, we develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature. Both the model fitting and hypothesis testing leverage a resampled version of the sensitive attribute obeying equalized odds, by construction. We demonstrate the applicability and validity of the proposed framework both in regression and multi-class classification problems, reporting improved performance over state-of-the-art methods. Lastly, we show how to incorporate techniques for equitable uncertainty quantification—unbiased for each group under study—to communicate the results of the data analysis in exact terms.
READ FULL TEXT