Achievable Rate-Power Tradeoff in THz SWIPT Systems with Resonant Tunnelling Diodes
In this paper, we study terahertz (THz) simultaneous wireless information and power transfer (SWIPT) systems. Since coherent information detection is challenging at THz frequencies and Schottky diodes are not usable for THz energy harvesting (EH), we employ unipolar amplitude shift keying (ASK) modulation at the transmitter (TX) and a resonant tunnelling diode (RTD)- based EH circuit at the receiver (RX) to extract both information and power from the received signal. However, the electrical properties of Schottky diodes and RTDs are different, and unlike EH receivers based on a single Schottky diode, an accurate closed-form EH model for RTD-based RXs is not available, yet. In this paper, we model the dependency of the instantaneous RX output power on the instantaneous received power by a non-linear piecewise function, whose parameters are adjusted to fit circuit simulation results. We formulate an optimization problem to maximize the mutual information between the TX and RX signals subject to constraints on the peak amplitude of the transmitted signal and the required average harvested power at the RX. Furthermore, we determine a feasibility condition for the formulated problem, and for high and low required average harvested powers, we derive the achievable information rate numerically and in closed form, respectively. Our simulation results highlight a tradeoff between the information rate and the average harvested power. Finally, we show that this tradeoff is determined by the peak amplitude of the transmitted signal and the maximum instantaneous harvested power for low and high received signal powers, respectively.
READ FULL TEXT