Acceleration of RED via Vector Extrapolation

05/06/2018
by   Tao Hong, et al.
0

Models play an important role in inverse problems, serving as the prior for representing the original signal to be recovered. REgularization by Denoising (RED) is a recently introduced general framework for constructing such priors using state-of-the-art denoising algorithms. Using RED, solving inverse problems is shown to amount to an iterated denoising process. However, as the complexity of denoising algorithms is generally high, this might lead to an overall slow algorithm. In this paper, we suggest an accelerated technique based on vector extrapolation (VE) to speed-up existing RED solvers. Numerical experiments validate the obtained gain by VE, leading to nearly 70% savings in computations compared with the original solvers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset