Acceleration of multiple precision matrix multiplication based on multi-component floating-point arithmetic using AVX2

01/17/2021
by   Tomonori Kouya, et al.
0

In this paper, we report the results obtained from the acceleration of multi-binary64-type multiple precision matrix multiplication with AVX2. We target double-double (DD), triple-double (TD), and quad-double (QD) precision arithmetic designed by certain types of error-free transformation (EFT) arithmetic. Furthermore, we implement SIMDized EFT functions, which simultaneously compute with four binary64 numbers on x86_64 computing environment, and by using help of them, we also develop SIMDized DD, TD, and QD additions and multiplications. In addition, AVX2 load/store functions were adopted to efficiently speed up reading and storing matrix elements from/to memory. Owing to these combined techniques, our implemented multiple precision matrix multiplications have been accelerated more than three times compared with non-accelerated ones. Our accelerated matrix multiplication modifies the performance of parallelization with OpenMP.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro