Acceleration in Hyperbolic and Spherical Spaces

12/07/2020 ∙ by David Martinez Rubio, et al. ∙ 0

We further research on the acceleration phenomenon on Riemannian manifolds by introducing the first global first-order method that achieves the same rates as accelerated gradient descent in the Euclidean space for the optimization of smooth and geodesically convex (g-convex) or strongly g-convex functions defined on the hyperbolic space or a subset of the sphere, up to constants and log factors. To the best of our knowledge, this is the first method that is proved to achieve these rates globally on functions defined on a Riemannian manifold ℳ other than the Euclidean space. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa. As a proxy, we solve a constrained non-convex Euclidean problem, under a condition between convexity and quasar-convexity.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.